Multi-agent discrete-time graphical games and reinforcement learning solutions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-agent discrete-time graphical games and reinforcement learning solutions

This paper introduces a new class of multi-agent discrete-time dynamic games, known in the literature as dynamic graphical games. For that reason a local performance index is defined for each agent that depends only on the local information available to each agent. Nash equilibrium policies and best-response policies are given in terms of the solutions to the discrete-time coupled Hamilton–Jaco...

متن کامل

Reinforcement Learning in Multi-agent Games

This article investigates the performance of independent reinforcement learners in multiagent games. Convergence to Nash equilibria and parameter settings for desired learning behavior are discussed for Q-learning, Frequency Maximum Q value (FMQ) learning and lenient Q-learning. FMQ and lenient Q-learning are shown to outperform regular Q-learning significantly in the context of coordination ga...

متن کامل

Online Adaptive Learning Solution of Multi-Agent Differential Graphical Games

Distributed networks have received much attention in the last year because of their flexibility and computational performance. The ability to coordinate agents is important in many real-world tasks where it is necessary for agents to exchange information with each other. Synchronization behavior among agents is found in flocking of birds, schooling of fish, and other natural systems. Work has b...

متن کامل

Markov Games of Incomplete Information for Multi-Agent Reinforcement Learning

Partially observable stochastic games (POSGs) are an attractive model for many multi-agent domains, but are computationally extremely difficult to solve. We present a new model, Markov games of incomplete information (MGII) which imposes a mild restriction on POSGs while overcoming their primary computational bottleneck. Finally we show how to convert a MGII into a continuous but bounded fully ...

متن کامل

Markov Games as a Framework for Multi-Agent Reinforcement Learning

In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function. In this solipsistic view, secondary agents can only be part of the environment and are therefore fixed in their behavior. The framework of Markov games allows us to widen this view to include multiple adaptive agents ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Automatica

سال: 2014

ISSN: 0005-1098

DOI: 10.1016/j.automatica.2014.10.047